โก Ciro Network Tech Stack
TL;DR: Ciro Network combines proven distributed systems (Kafka + libp2p), zero-knowledge cryptography (Cairo + Starknet), and modern orchestration to deliver the first production-ready verifiable AI compute infrastructure.
๐๏ธ System Architecture at a Glance
๐ฏ Core Design Philosophy: Every component selected based on peer-reviewed research and battle-tested in enterprise environments.
The Three Pillars
graph LR A[๐ฌ Scientific Rigor] --> D[โก Ciro Network] B[๐ญ Production Ready] --> D C[โ Verifiable Compute] --> D style A fill:#4338ca,stroke:#312e81,color:#fff style B fill:#059669,stroke:#064e3b,color:#fff style C fill:#dc2626,stroke:#991b1b,color:#fff style D fill:#7c3aed,stroke:#581c87,color:#fff
๐ Complete Network Architecture
CIRO Network creates a unified, verifiable AI compute layer built on a multi-chain foundation with Starknet at its core, expanding to support Bitcoin settlements and cross-chain operations.
๐ Multi-Chain Foundation with Starknet Core
Why Starknet as the Hub: CIRO Network is anchored on Starknet, leveraging its unique zero-knowledge architecture for sub-cent transaction costs and cryptographic verification. Every AI computation can come with STARK proofs, ensuring verifiable results while maintaining the highest levels of security.
Multi-Chain Expansion Strategy: Following our Task 27 roadmap, CIRO implements a burn-and-mint architecture across:
- Starknet: Canonical governance hub and primary compute coordination
- Ethereum: ERC20 implementation with bridge interfaces for maximum ecosystem reach
- Arbitrum: L2-optimized deployment for reduced transaction costs
- Polygon: PoS-compatible implementation for fast, cheap operations
- Solana: SPL token for high-throughput operations
Bitcoin Settlement Integration: Through the evolving Starknet ecosystem, CIRO Network will leverage Bitcoin settlement capabilities, enabling:
- Lightning Network micropayments for small compute jobs
- Bitcoin-secured final settlement for high-value operations
- Cross-chain bridge security backed by Bitcoin's proven economic model
โก Real Benefits for Everyone
For Developers:
- Competitive Pricing through market-driven compute allocation
- Instant Access to specialized AI hardware without long waitlists
- Cryptographic Guarantees of compute integrity through STARK proofs
- No Vendor Lock-in - your models work anywhere
- Multi-chain Flexibility - deploy on the chain that best fits your needs
For Compute Providers:
- Additional Revenue from idle hardware across multiple networks
- Flexible Participation - contribute when convenient
- Transparent Rewards with automatic cross-chain distribution
- Global Market Access without intermediaries
For the Ecosystem:
- Open Innovation - anyone can build and contribute
- Verifiable Results enable new types of applications
- Economic Sustainability through multi-chain token economics
- Cross-Chain Liquidity - seamless value flow between networks
๐ก Distributed Storage & Settlement
Current Implementation: CIRO Network uses enterprise-grade storage solutions designed for performance and reliability. AI models and job data are managed through our distributed coordinator system, ensuring fast access and secure handling across the global worker network.
Bitcoin & Multi-Chain Settlement: As outlined in our roadmap, CIRO Network is building toward:
- Bitcoin Lightning integration for instant micropayments
- Cross-chain bridges connecting all supported networks
- Unified settlement - jobs can be paid on any supported chain
- Bitcoin-backed security for the highest-value computational work
๐ Security Through Multi-Chain Economics
Layered Security Model:
- STARK Proofs provide cryptographic verification of compute jobs
- Multi-chain staking distributes economic security across networks
- Bitcoin settlement adds the ultimate layer of security for critical operations
- Cross-chain governance maintains unified protocol standards
Economic Incentives: The $CIRO token operates across all supported chains with unified economics:
- Stake on any supported network
- Earn rewards for providing compute or validation
- Governance participation through cross-chain voting
- Burn-and-mint mechanics maintain supply consistency
๐ง Consensus & Byzantine Fault Tolerance
๐ฌ Mathematical Foundation
Based on Lamport, Shostak & Pease (1982) - The Byzantine Generals Problem
Byzantine Fault Tolerance Requirement:
$$N \geq 3f + 1$$
Where:
- $N$ = Total validator nodes
- $f$ = Maximum Byzantine failures
- $3f + 1$ = Minimum honest majority required
โก Economic Security Model
Network Security Function:
$$\text{Security}(n) = \sum_{i=1}^{n} (\text{Stake}_i \times \text{Reputation}_i \times \text{Uptime}_i)$$
Where:
- $\text{Stake}_i$ = CIRO tokens locked by validator $i$
- $\text{Reputation}_i$ = Historical performance score (0.0-1.0)
- $\text{Uptime}_i$ = Network availability factor (last 30 days)
โ๏ธ Slashing Matrix
Violation Type | Severity | Stake Loss | Reputation | Recovery Time |
---|---|---|---|---|
๐ Double Signing | Critical | 30% | -50 points | 90 days |
๐ด Downtime (6h+) | Medium | 5% | -10 points | 30 days |
โ Invalid Compute | High | 50% | -75 points | 180 days |
๐จ Coordinated Attack | Critical | 100% | Permanent Ban | Never |
๐ฎ Zero-Knowledge Verification Engine
๐งฎ The ZK-ML Innovation
๐ฏ Breakthrough: Making AI computation verifiable through zero-knowledge proofs
flowchart LR A[๐ง ML Model<br/>PyTorch/ONNX] --> B[๐ง Cairo Transpiler<br/>Giza/Orion] B --> C[โก Provable Execution<br/>Worker Nodes] C --> D[โจ STARK Proof<br/>Cryptographic Guarantee] D --> E[โ๏ธ On-Chain Verification<br/>Starknet] style A fill:#3b82f6,stroke:#1e40af,color:#fff style B fill:#059669,stroke:#047857,color:#fff style C fill:#dc2626,stroke:#b91c1c,color:#fff style D fill:#7c3aed,stroke:#6d28d9,color:#fff style E fill:#0891b2,stroke:#0e7490,color:#fff
๐ STARK Proof Performance
โก COMPLEXITY ANALYSIS:
Verification Time: O(logยฒ(n)) ๐ข Logarithmic scaling
Proof Size: O(logยฒ(n)) ๐ข Compact proofs
Prover Time: O(nยทlog(n)) ๐ก Linear + log overhead
Security Level: 2^(-128) ๐ข Cryptographically secure
Where n = computation size (model parameters ร inference steps)
๐ฏ Supported ML Frameworks
Framework | Status | Models Supported | Proof Gen Time |
---|---|---|---|
๐ Scikit-Learn | โ Full | Linear/Tree models | +20-50ms |
๐ฅ PyTorch | ๐ก Limited | CNNs, Feedforward | +100-300ms |
๐ฆ ONNX | โ Full | Universal format | +50-150ms |
๐ฒ XGBoost | โ Full | Gradient boosting | +30-80ms |
๐ค Transformers | ๐ Coming | Attention models | +500-2000ms |
๐ Hybrid Network Orchestration
๐ Enterprise-Grade + P2P Architecture
๐ก Innovation: Combining Apache Kafka reliability with libp2p decentralization
graph TB subgraph "๐ก P2P Discovery Layer" DHT[๐๏ธ Kademlia DHT<br/>Peer Discovery] GOSSIP[๐ข GossipSub<br/>Message Propagation] RELAY[๐ Relay Nodes<br/>NAT Traversal] end subgraph "๐ฎ Enterprise Messaging" KAFKA1[๐ Jobs Topic<br/>Partitioned by Type] KAFKA2[โ Results Topic<br/>Proof Aggregation] KAFKA3[๐จ Alerts Topic<br/>Network Health] end subgraph "โก Performance Layer" CACHE[๐พ Redis Cache<br/>Sub-ms Lookup] LB[โ๏ธ Load Balancer<br/>Geographic Routing] CDN[๐ Global CDN<br/>Proof Caching] end DHT --> KAFKA1 GOSSIP --> KAFKA2 RELAY --> KAFKA3 KAFKA1 --> CACHE KAFKA2 --> LB KAFKA3 --> CDN style DHT fill:#3b82f6,color:#fff style GOSSIP fill:#059669,color:#fff style RELAY fill:#dc2626,color:#fff
๐ Message Flow Performance
๐ KAFKA PERFORMANCE METRICS:
Throughput: 10M+ msg/sec ๐ Enterprise scale
Latency: <5ms same-DC โก Sub-millisecond
Durability: 3x replication ๐ก๏ธ Byzantine resilient
Ordering: Per-partition โ
Guaranteed consistency
โ๏ธ Starknet Smart Contract Layer
๐๏ธ Core Contract Architecture
// ๐ฏ JobManager: The Heart of Ciro Network
#[starknet::contract]
mod JobManager {
use starknet::ContractAddress;
use ciro::types::{Job, WorkerInfo, ComputeSpec};
#[storage]
struct Storage {
// ๐ Active job registry
active_jobs: LegacyMap<felt252, Job>,
// ๐ท Worker node registry
worker_registry: LegacyMap<ContractAddress, WorkerInfo>,
// ๐ข Global job counter
job_counter: felt252,
// ๐ฐ Payment escrow
job_payments: LegacyMap<felt252, u256>,
}
#[external(v0)]
fn submit_job(
ref self: ContractState,
model_hash: felt252,
input_commitment: felt252,
compute_requirements: ComputeSpec
) -> felt252 {
// ๐ Validate compute requirements
self._validate_compute_spec(compute_requirements);
// ๐ Generate unique job ID
let job_id = self.job_counter.read() + 1;
self.job_counter.write(job_id);
// ๐ก Emit job for worker discovery
self.emit(JobSubmitted {
job_id,
model_hash,
input_commitment,
compute_requirements,
reward: compute_requirements.max_payment
});
job_id
}
}
๐ฐ CDC Pool: Economic Security Engine
#[starknet::contract]
mod CDCPool {
use ciro::interfaces::ICiroToken;
#[storage]
struct Storage {
// ๐ Total network stake
total_stake: u256,
// ๐ฅ Individual worker stakes
worker_stakes: LegacyMap<ContractAddress, u256>,
// โ๏ธ Slashing history & penalties
slash_history: LegacyMap<ContractAddress, SlashRecord>,
// ๐ Performance reputation scores
reputation_scores: LegacyMap<ContractAddress, u64>,
}
#[external(v0)]
fn stake_for_worker(
ref self: ContractState,
worker_address: ContractAddress,
amount: u256
) {
let caller = get_caller_address();
// ๐ธ Transfer CIRO tokens to pool
let ciro_token = ICiroToken {
contract_address: self.ciro_token_address.read()
};
ciro_token.transfer_from(caller, get_contract_address(), amount);
// ๐ Update stake records
let current_stake = self.worker_stakes.read(worker_address);
self.worker_stakes.write(worker_address, current_stake + amount);
self.total_stake.write(self.total_stake.read() + amount);
// ๐ Emit staking event
self.emit(WorkerStaked { worker_address, amount, total_stake: current_stake + amount });
}
}
โฝ Gas Optimization Strategy
Operation | Individual Cost | Batched Cost | Savings |
---|---|---|---|
๐ Proof Verification | $0.15 | $0.02 | 87% |
๐ฐ Reward Distribution | $0.08 | $0.01 | 88% |
๐ Job Submission | $0.05 | $0.03 | 40% |
โ๏ธ Slashing Action | $0.12 | $0.08 | 33% |
๐ Real-Time Performance Analytics
๐ฅ Hardware Utilization Matrix
๐ป WORKER PERFORMANCE (Live Data):
GPU Model Utilization Jobs/Hour Revenue/Hour Efficiency
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ H100 SXM 80GB โโโโโโโโ 78% 127 $3.20 โญโญโญโญโญ
๐ฏ A100 80GB โโโโโโโโ 71% 94 $2.40 โญโญโญโญ
๐ฎ RTX 4090 โโโโโโโโ 85% 73 $1.80 โญโญโญโญ
โก RTX 3080 โโโโโโโโ 89% 45 $0.90 โญโญโญ
๐ Geographic Distribution
Global Compute Distribution:
Region | Percentage | Visual |
---|---|---|
๐บ๐ธ North America | 45% | โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ |
๐ช๐บ Europe | 32% | โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ |
๐ฏ๐ต Asia Pacific | 18% | โโโโโโโโโโโโโโโโโโ |
๐ Other Regions | 5% | โโโโโ |
๐ Scaling Projections
๐ Network Growth Trajectory (6 Months):
Month | Active Workers | Growth Rate |
---|---|---|
Month 1 | 127 | - |
Month 2 | 185 | +46% |
Month 3 | 267 | +44% |
Month 4 | 389 | +46% |
Month 5 | 566 | +45% |
Month 6 | 824 | +46% |
๐ก๏ธ Multi-Layer Security Architecture
๐ Security Stack Overview
graph TB subgraph "๐ Network Security" TLS[๐ TLS 1.3<br/>End-to-End Encryption] ED[โ๏ธ Ed25519<br/>Digital Signatures] AES[๐ก๏ธ AES-256-GCM<br/>Symmetric Encryption] end subgraph "๐ฐ Economic Security" STAKE[๐ Stake-Weighted Voting<br/>Economic Alignment] SLASH[โ๏ธ Progressive Slashing<br/>Graduated Penalties] REP[๐ Reputation System<br/>Historical Performance] end subgraph "๐ฎ Cryptographic Security" ZK[๐งฎ Zero-Knowledge Proofs<br/>Privacy Preservation] STARK[โจ STARK Verification<br/>Computational Integrity] HASH[#๏ธโฃ Poseidon Hashing<br/>ZK-Friendly] end TLS --> STAKE ED --> SLASH AES --> REP STAKE --> ZK SLASH --> STARK REP --> HASH style TLS fill:#dc2626,color:#fff style STAKE fill:#059669,color:#fff style ZK fill:#7c3aed,color:#fff
๐ฅ Compliance Framework
Standard | Status | Coverage | Audit Date |
---|---|---|---|
๐ช๐บ GDPR | โ Compliant | Data sovereignty | Q2 2024 |
๐ฅ HIPAA | ๐ In Progress | Healthcare data | Q3 2024 |
๐ SOC 2 Type II | ๐ Planned | Enterprise security | Q4 2024 |
๐ ISO 27001 | ๐ Planned | Information security | Q1 2025 |
๐ Development Ecosystem
๐ ๏ธ SDK & Integration Tools
// ๐ฏ TypeScript SDK - Production Ready
import { CiroClient, ModelConfig, VerificationLevel } from '@ciro-network/sdk';
const client = new CiroClient({
network: 'mainnet', // ๐ Network selection
apiKey: process.env.CIRO_API_KEY,
verification: VerificationLevel.ZKML, // ๐ฎ Proof generation
timeout: 30000, // โฑ๏ธ Request timeout
retries: 3, // ๐ Auto-retry logic
region: 'us-east-1' // ๐ Geographic preference
});
// ๐ Deploy and run verifiable AI
const result = await client.infer({
modelId: 'resnet50-production',
input: imageBuffer,
generateProof: true, // โ
Cryptographic verification
priority: 'high', // โก Execution priority
maxLatency: 500 // ๐ SLA requirements
});
console.log(`๐ฏ Prediction: ${result.output}`);
console.log(`๐ Confidence: ${result.confidence}`);
console.log(`โจ Proof Hash: ${result.proofHash}`);
console.log(`โ๏ธ Verified: ${result.onChainVerified}`);
# ๐ Python SDK - ML Engineer Friendly
from ciro_sdk import CiroClient, VerificationLevel
import numpy as np
client = CiroClient(
network="mainnet",
verification=VerificationLevel.ZKML,
gpu_preference="H100" # ๐ Target enterprise hardware
)
# ๐ง Load your model and run verifiable inference
model_deployment = client.deploy_model(
framework="pytorch",
model_path="./models/transformer.onnx",
optimization="fp16", # โก Performance optimization
verification=True # ๐ฎ Enable proof generation
)
result = client.infer(
model_id=model_deployment.id,
input_data=tokenized_text,
batch_size=32, # ๐ Batch processing
generate_proof=True # โ
Cryptographic guarantee
)
๐จ Framework Integrations
Platform | Integration | Features | Status |
---|---|---|---|
๐ค Hugging Face | Native | Model hub deployment | โ Live |
๐ MLflow | Plugin | Experiment tracking | โ Live |
๐ TensorBoard | Dashboard | Performance monitoring | ๐ Beta |
โ๏ธ Weights & Biases | Integration | Advanced analytics | ๐ Q1 2025 |
๐บ๏ธ Technical Roadmap
๐ Quarterly Milestones
gantt title ๐ Ciro Network Development Timeline dateFormat YYYY-MM-DD section Foundation Core pBFT consensus :done, foundation1, 2024-01-01, 2024-03-31 Basic zkML support :done, foundation2, 2024-02-01, 2024-04-30 Kafka job orchestration :done, foundation3, 2024-03-01, 2024-05-31 section Scaling Advanced zkML (Transformers) :active, scaling1, 2024-06-01, 2024-09-30 Multi-GPU worker support :scaling2, 2024-07-01, 2024-10-31 Cross-chain verification :scaling3, 2024-08-01, 2024-11-30 section Optimization Proof batching & aggregation :optimization1, 2024-10-01, 2025-01-31 FHE privacy features :optimization2, 2024-11-01, 2025-02-28 Federated learning :optimization3, 2024-12-01, 2025-03-31 section Ecosystem AI model marketplace :ecosystem1, 2025-01-01, 2025-06-30 Decentralized training :ecosystem2, 2025-03-01, 2025-08-31 Cross-platform AI oracles :ecosystem3, 2025-06-01, 2025-12-31
๐ฏ Performance Targets
Metric | Q1 2024 | Q2 2024 | Q3 2024 | Q4 2024 | Q1 2025 |
---|---|---|---|---|---|
๐ Jobs/Hour | 2,847 | 15,000 | 35,000 | 75,000 | 150,000+ |
โก Latency | 187ms | 150ms | 120ms | 100ms | <80ms |
โ Success Rate | 98.1% | 99.0% | 99.5% | 99.8% | 99.9%+ |
๐ฅ Active Workers | 127 | 500 | 1,200 | 3,000 | 8,000+ |
๐ฌ Scientific Research Foundation
๐ Core Academic Papers
๐ Peer-reviewed research backing every architectural decision
-
๐ก๏ธ Byzantine Consensus: Lamport et al. (1982) - "The Byzantine Generals Problem"
- Foundation for fault-tolerant distributed systems
-
โก Practical Implementation: Castro & Liskov (1999) - "Practical Byzantine Fault Tolerance"
- Production-ready consensus algorithms
-
๐ฎ Zero-Knowledge Proofs: Goldwasser et al. (1989) - "Knowledge Complexity of Interactive Proof Systems"
- Cryptographic foundation for verifiable computation
-
โจ STARK Technology: Ben-Sasson et al. (2018) - "Scalable, transparent, post-quantum secure computational integrity"
- Modern zero-knowledge proof systems
๐งฎ Mathematical Models
Network Efficiency Coefficient:
ฮท = (ฮฃแตข Cแตข ร Uแตข ร Rแตข) / (ฮฃแตข Cแตข ร Pแตข)
Where:
โข ฮท = Network efficiency (0.0 - 1.0)
โข Cแตข = Compute capacity of worker i (TFLOPS)
โข Uแตข = Utilization rate of worker i (0.0 - 1.0)
โข Rแตข = Reliability score of worker i (0.0 - 1.0)
โข Pแตข = Peak theoretical performance of worker i
Economic Security Scaling:
S(n,f) = min(Economic_Security(n,f), Byzantine_Security(n,f))
Where:
โข Economic_Security(n,f) = ฮฃแตขโโโฟ Stakeแตข ร Slashing_Rateแตข
โข Byzantine_Security(n,f) = 1 if n โฅ 3f + 1, else 0
โข n = total validators, f = Byzantine failures
๐ What's Next?
๐ง For Technical Teams
graph LR A[๐ Read This Guide] --> B[๐ฎ Explore ZK-ML Details] B --> C[โ๏ธ Smart Contract Integration] C --> D[๐ Build Your First dApp] style A fill:#3b82f6,color:#fff style B fill:#7c3aed,color:#fff style C fill:#059669,color:#fff style D fill:#dc2626,color:#fff
๐ฌ For Researchers
- ๐ Academic Collaboration: Join our research working groups
- ๐ Open Source: Contribute to GitHub repositories
- ๐ Peer Review: Validate mathematical models and implementations
- ๐ก Innovation Labs: Propose novel ZK-ML applications
๐ข For Enterprises
- ๐ POC Development: Build proof-of-concepts on testnet
- ๐ก๏ธ Security Audits: Participate in security review process
- ๐ Integration Planning: Design enterprise AI workflows
- ๐ค Strategic Partnerships: Explore collaboration opportunities
๐ฏ The future of AI is verifiable, decentralized, and built on scientific principles.
Ready to be part of the revolution? Explore our architecture components and start building today! ๐