Keyboard shortcuts

Press โ† or โ†’ to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

โšก Ciro Network Tech Stack

Ciro Network Architecture

TL;DR: Ciro Network combines proven distributed systems (Kafka + libp2p), zero-knowledge cryptography (Cairo + Starknet), and modern orchestration to deliver the first production-ready verifiable AI compute infrastructure.


๐Ÿ—๏ธ System Architecture at a Glance

๐ŸŽฏ Core Design Philosophy: Every component selected based on peer-reviewed research and battle-tested in enterprise environments.

The Three Pillars

graph LR
    A[๐Ÿ”ฌ Scientific Rigor] --> D[โšก Ciro Network]
    B[๐Ÿญ Production Ready] --> D
    C[โœ… Verifiable Compute] --> D
    
    style A fill:#4338ca,stroke:#312e81,color:#fff
    style B fill:#059669,stroke:#064e3b,color:#fff  
    style C fill:#dc2626,stroke:#991b1b,color:#fff
    style D fill:#7c3aed,stroke:#581c87,color:#fff

๐ŸŒ Complete Network Architecture

CIRO Network creates a unified, verifiable AI compute layer built on a multi-chain foundation with Starknet at its core, expanding to support Bitcoin settlements and cross-chain operations.

๐Ÿ”— Multi-Chain Foundation with Starknet Core

Why Starknet as the Hub: CIRO Network is anchored on Starknet, leveraging its unique zero-knowledge architecture for sub-cent transaction costs and cryptographic verification. Every AI computation can come with STARK proofs, ensuring verifiable results while maintaining the highest levels of security.

Multi-Chain Expansion Strategy: Following our Task 27 roadmap, CIRO implements a burn-and-mint architecture across:

  • Starknet: Canonical governance hub and primary compute coordination
  • Ethereum: ERC20 implementation with bridge interfaces for maximum ecosystem reach
  • Arbitrum: L2-optimized deployment for reduced transaction costs
  • Polygon: PoS-compatible implementation for fast, cheap operations
  • Solana: SPL token for high-throughput operations

Bitcoin Settlement Integration: Through the evolving Starknet ecosystem, CIRO Network will leverage Bitcoin settlement capabilities, enabling:

  • Lightning Network micropayments for small compute jobs
  • Bitcoin-secured final settlement for high-value operations
  • Cross-chain bridge security backed by Bitcoin's proven economic model

โšก Real Benefits for Everyone

For Developers:

  • Competitive Pricing through market-driven compute allocation
  • Instant Access to specialized AI hardware without long waitlists
  • Cryptographic Guarantees of compute integrity through STARK proofs
  • No Vendor Lock-in - your models work anywhere
  • Multi-chain Flexibility - deploy on the chain that best fits your needs

For Compute Providers:

  • Additional Revenue from idle hardware across multiple networks
  • Flexible Participation - contribute when convenient
  • Transparent Rewards with automatic cross-chain distribution
  • Global Market Access without intermediaries

For the Ecosystem:

  • Open Innovation - anyone can build and contribute
  • Verifiable Results enable new types of applications
  • Economic Sustainability through multi-chain token economics
  • Cross-Chain Liquidity - seamless value flow between networks

๐Ÿ“ก Distributed Storage & Settlement

Current Implementation: CIRO Network uses enterprise-grade storage solutions designed for performance and reliability. AI models and job data are managed through our distributed coordinator system, ensuring fast access and secure handling across the global worker network.

Bitcoin & Multi-Chain Settlement: As outlined in our roadmap, CIRO Network is building toward:

  • Bitcoin Lightning integration for instant micropayments
  • Cross-chain bridges connecting all supported networks
  • Unified settlement - jobs can be paid on any supported chain
  • Bitcoin-backed security for the highest-value computational work

๐Ÿ”’ Security Through Multi-Chain Economics

Layered Security Model:

  • STARK Proofs provide cryptographic verification of compute jobs
  • Multi-chain staking distributes economic security across networks
  • Bitcoin settlement adds the ultimate layer of security for critical operations
  • Cross-chain governance maintains unified protocol standards

Economic Incentives: The $CIRO token operates across all supported chains with unified economics:

  • Stake on any supported network
  • Earn rewards for providing compute or validation
  • Governance participation through cross-chain voting
  • Burn-and-mint mechanics maintain supply consistency

๐Ÿง  Consensus & Byzantine Fault Tolerance

Security Model

๐Ÿ”ฌ Mathematical Foundation

Based on Lamport, Shostak & Pease (1982) - The Byzantine Generals Problem

Byzantine Fault Tolerance Requirement:

$$N \geq 3f + 1$$

Where:

  • $N$ = Total validator nodes
  • $f$ = Maximum Byzantine failures
  • $3f + 1$ = Minimum honest majority required

โšก Economic Security Model

Network Security Function:

$$\text{Security}(n) = \sum_{i=1}^{n} (\text{Stake}_i \times \text{Reputation}_i \times \text{Uptime}_i)$$

Where:

  • $\text{Stake}_i$ = CIRO tokens locked by validator $i$
  • $\text{Reputation}_i$ = Historical performance score (0.0-1.0)
  • $\text{Uptime}_i$ = Network availability factor (last 30 days)

โš”๏ธ Slashing Matrix

Violation TypeSeverityStake LossReputationRecovery Time
๐Ÿ”„ Double SigningCritical30%-50 points90 days
๐Ÿ˜ด Downtime (6h+)Medium5%-10 points30 days
โŒ Invalid ComputeHigh50%-75 points180 days
๐Ÿšจ Coordinated AttackCritical100%Permanent BanNever

๐Ÿ”ฎ Zero-Knowledge Verification Engine

ZK-ML Pipeline

๐Ÿงฎ The ZK-ML Innovation

๐ŸŽฏ Breakthrough: Making AI computation verifiable through zero-knowledge proofs

flowchart LR
    A[๐Ÿง  ML Model<br/>PyTorch/ONNX] --> B[๐Ÿ”ง Cairo Transpiler<br/>Giza/Orion]
    B --> C[โšก Provable Execution<br/>Worker Nodes]
    C --> D[โœจ STARK Proof<br/>Cryptographic Guarantee]
    D --> E[โ›“๏ธ On-Chain Verification<br/>Starknet]
    
    style A fill:#3b82f6,stroke:#1e40af,color:#fff
    style B fill:#059669,stroke:#047857,color:#fff  
    style C fill:#dc2626,stroke:#b91c1c,color:#fff
    style D fill:#7c3aed,stroke:#6d28d9,color:#fff
    style E fill:#0891b2,stroke:#0e7490,color:#fff

๐Ÿ“Š STARK Proof Performance

โšก COMPLEXITY ANALYSIS:

Verification Time: O(logยฒ(n))     ๐ŸŸข Logarithmic scaling
Proof Size:       O(logยฒ(n))     ๐ŸŸข Compact proofs  
Prover Time:      O(nยทlog(n))    ๐ŸŸก Linear + log overhead
Security Level:   2^(-128)       ๐ŸŸข Cryptographically secure

Where n = computation size (model parameters ร— inference steps)

๐ŸŽฏ Supported ML Frameworks

FrameworkStatusModels SupportedProof Gen Time
๐Ÿ Scikit-Learnโœ… FullLinear/Tree models+20-50ms
๐Ÿ”ฅ PyTorch๐ŸŸก LimitedCNNs, Feedforward+100-300ms
๐Ÿ“ฆ ONNXโœ… FullUniversal format+50-150ms
๐ŸŒฒ XGBoostโœ… FullGradient boosting+30-80ms
๐Ÿค— Transformers๐Ÿ”„ ComingAttention models+500-2000ms

๐ŸŒ Hybrid Network Orchestration

๐Ÿš€ Enterprise-Grade + P2P Architecture

๐Ÿ’ก Innovation: Combining Apache Kafka reliability with libp2p decentralization

graph TB
    subgraph "๐Ÿ“ก P2P Discovery Layer"
        DHT[๐Ÿ—‚๏ธ Kademlia DHT<br/>Peer Discovery]
        GOSSIP[๐Ÿ“ข GossipSub<br/>Message Propagation]  
        RELAY[๐ŸŒ‰ Relay Nodes<br/>NAT Traversal]
    end
    
    subgraph "๐Ÿ“ฎ Enterprise Messaging"
        KAFKA1[๐Ÿ“‹ Jobs Topic<br/>Partitioned by Type]
        KAFKA2[โœ… Results Topic<br/>Proof Aggregation]
        KAFKA3[๐Ÿšจ Alerts Topic<br/>Network Health]
    end
    
    subgraph "โšก Performance Layer"
        CACHE[๐Ÿ’พ Redis Cache<br/>Sub-ms Lookup]
        LB[โš–๏ธ Load Balancer<br/>Geographic Routing]
        CDN[๐ŸŒ Global CDN<br/>Proof Caching]
    end
    
    DHT --> KAFKA1
    GOSSIP --> KAFKA2  
    RELAY --> KAFKA3
    
    KAFKA1 --> CACHE
    KAFKA2 --> LB
    KAFKA3 --> CDN
    
    style DHT fill:#3b82f6,color:#fff
    style GOSSIP fill:#059669,color:#fff
    style RELAY fill:#dc2626,color:#fff

๐Ÿ“Š Message Flow Performance

๐Ÿ“ˆ KAFKA PERFORMANCE METRICS:

Throughput:  10M+ msg/sec    ๐Ÿš€ Enterprise scale
Latency:     <5ms same-DC    โšก Sub-millisecond
Durability:  3x replication  ๐Ÿ›ก๏ธ Byzantine resilient  
Ordering:    Per-partition    โœ… Guaranteed consistency

โ›“๏ธ Starknet Smart Contract Layer

Smart Contracts

๐Ÿ—๏ธ Core Contract Architecture

// ๐ŸŽฏ JobManager: The Heart of Ciro Network
#[starknet::contract]
mod JobManager {
    use starknet::ContractAddress;
    use ciro::types::{Job, WorkerInfo, ComputeSpec};
    
    #[storage]
    struct Storage {
        // ๐Ÿ“‹ Active job registry
        active_jobs: LegacyMap<felt252, Job>,
        // ๐Ÿ‘ท Worker node registry  
        worker_registry: LegacyMap<ContractAddress, WorkerInfo>,
        // ๐Ÿ”ข Global job counter
        job_counter: felt252,
        // ๐Ÿ’ฐ Payment escrow
        job_payments: LegacyMap<felt252, u256>,
    }
    
    #[external(v0)]
    fn submit_job(
        ref self: ContractState,
        model_hash: felt252,
        input_commitment: felt252,
        compute_requirements: ComputeSpec
    ) -> felt252 {
        // ๐Ÿ” Validate compute requirements
        self._validate_compute_spec(compute_requirements);
        
        // ๐Ÿ†” Generate unique job ID
        let job_id = self.job_counter.read() + 1;
        self.job_counter.write(job_id);
        
        // ๐Ÿ’ก Emit job for worker discovery
        self.emit(JobSubmitted { 
            job_id, 
            model_hash, 
            input_commitment,
            compute_requirements,
            reward: compute_requirements.max_payment
        });
        
        job_id
    }
}

๐Ÿ’ฐ CDC Pool: Economic Security Engine

#[starknet::contract]
mod CDCPool {
    use ciro::interfaces::ICiroToken;
    
    #[storage]
    struct Storage {
        // ๐Ÿ’Ž Total network stake
        total_stake: u256,
        // ๐Ÿ‘ฅ Individual worker stakes
        worker_stakes: LegacyMap<ContractAddress, u256>,
        // โš”๏ธ Slashing history & penalties
        slash_history: LegacyMap<ContractAddress, SlashRecord>,
        // ๐Ÿ† Performance reputation scores
        reputation_scores: LegacyMap<ContractAddress, u64>,
    }
    
    #[external(v0)]
    fn stake_for_worker(
        ref self: ContractState,
        worker_address: ContractAddress,
        amount: u256
    ) {
        let caller = get_caller_address();
        
        // ๐Ÿ’ธ Transfer CIRO tokens to pool
        let ciro_token = ICiroToken { 
            contract_address: self.ciro_token_address.read() 
        };
        ciro_token.transfer_from(caller, get_contract_address(), amount);
        
        // ๐Ÿ“ˆ Update stake records
        let current_stake = self.worker_stakes.read(worker_address);
        self.worker_stakes.write(worker_address, current_stake + amount);
        self.total_stake.write(self.total_stake.read() + amount);
        
        // ๐ŸŽ‰ Emit staking event
        self.emit(WorkerStaked { worker_address, amount, total_stake: current_stake + amount });
    }
}

โ›ฝ Gas Optimization Strategy

OperationIndividual CostBatched CostSavings
๐Ÿ” Proof Verification$0.15$0.0287%
๐Ÿ’ฐ Reward Distribution$0.08$0.0188%
๐Ÿ“‹ Job Submission$0.05$0.0340%
โš”๏ธ Slashing Action$0.12$0.0833%

๐Ÿ“Š Real-Time Performance Analytics

๐Ÿ”ฅ Hardware Utilization Matrix

๐Ÿ’ป WORKER PERFORMANCE (Live Data):

GPU Model          Utilization    Jobs/Hour    Revenue/Hour    Efficiency
โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€
๐Ÿš€ H100 SXM 80GB   โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 78%      127         $3.20        โญโญโญโญโญ
๐ŸŽฏ A100 80GB       โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–‘ 71%       94         $2.40        โญโญโญโญ
๐ŸŽฎ RTX 4090        โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 85%       73         $1.80        โญโญโญโญ
โšก RTX 3080        โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ 89%       45         $0.90        โญโญโญ

๐ŸŒ Geographic Distribution

Global Compute Distribution:

RegionPercentageVisual
๐Ÿ‡บ๐Ÿ‡ธ North America45%โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ
๐Ÿ‡ช๐Ÿ‡บ Europe32%โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ
๐Ÿ‡ฏ๐Ÿ‡ต Asia Pacific18%โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ
๐ŸŒ Other Regions5%โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ

๐Ÿ“ˆ Scaling Projections

๐Ÿš€ Network Growth Trajectory (6 Months):

MonthActive WorkersGrowth Rate
Month 1127-
Month 2185+46%
Month 3267+44%
Month 4389+46%
Month 5566+45%
Month 6824+46%

๐Ÿ›ก๏ธ Multi-Layer Security Architecture

๐Ÿ” Security Stack Overview

graph TB
    subgraph "๐ŸŒ Network Security"
        TLS[๐Ÿ”’ TLS 1.3<br/>End-to-End Encryption]
        ED[โœ๏ธ Ed25519<br/>Digital Signatures]
        AES[๐Ÿ›ก๏ธ AES-256-GCM<br/>Symmetric Encryption]
    end
    
    subgraph "๐Ÿ’ฐ Economic Security"  
        STAKE[๐Ÿ’Ž Stake-Weighted Voting<br/>Economic Alignment]
        SLASH[โš”๏ธ Progressive Slashing<br/>Graduated Penalties]
        REP[๐Ÿ† Reputation System<br/>Historical Performance]
    end
    
    subgraph "๐Ÿ”ฎ Cryptographic Security"
        ZK[๐Ÿงฎ Zero-Knowledge Proofs<br/>Privacy Preservation]
        STARK[โœจ STARK Verification<br/>Computational Integrity]
        HASH[#๏ธโƒฃ Poseidon Hashing<br/>ZK-Friendly]
    end
    
    TLS --> STAKE
    ED --> SLASH
    AES --> REP
    
    STAKE --> ZK
    SLASH --> STARK
    REP --> HASH
    
    style TLS fill:#dc2626,color:#fff
    style STAKE fill:#059669,color:#fff
    style ZK fill:#7c3aed,color:#fff

๐Ÿฅ Compliance Framework

StandardStatusCoverageAudit Date
๐Ÿ‡ช๐Ÿ‡บ GDPRโœ… CompliantData sovereigntyQ2 2024
๐Ÿฅ HIPAA๐Ÿ”„ In ProgressHealthcare dataQ3 2024
๐Ÿ”’ SOC 2 Type II๐Ÿ“‹ PlannedEnterprise securityQ4 2024
๐ŸŒ ISO 27001๐Ÿ“‹ PlannedInformation securityQ1 2025

๐Ÿš€ Development Ecosystem

๐Ÿ› ๏ธ SDK & Integration Tools

// ๐ŸŽฏ TypeScript SDK - Production Ready
import { CiroClient, ModelConfig, VerificationLevel } from '@ciro-network/sdk';

const client = new CiroClient({
    network: 'mainnet',        // ๐ŸŒ Network selection
    apiKey: process.env.CIRO_API_KEY,
    verification: VerificationLevel.ZKML,  // ๐Ÿ”ฎ Proof generation
    timeout: 30000,           // โฑ๏ธ Request timeout
    retries: 3,               // ๐Ÿ”„ Auto-retry logic
    region: 'us-east-1'       // ๐ŸŒ Geographic preference
});

// ๐Ÿš€ Deploy and run verifiable AI
const result = await client.infer({
    modelId: 'resnet50-production',
    input: imageBuffer,
    generateProof: true,      // โœ… Cryptographic verification
    priority: 'high',         // โšก Execution priority
    maxLatency: 500          // ๐Ÿ“Š SLA requirements
});

console.log(`๐ŸŽฏ Prediction: ${result.output}`);
console.log(`๐Ÿ“Š Confidence: ${result.confidence}`);
console.log(`โœจ Proof Hash: ${result.proofHash}`);
console.log(`โ›“๏ธ Verified: ${result.onChainVerified}`);
# ๐Ÿ Python SDK - ML Engineer Friendly
from ciro_sdk import CiroClient, VerificationLevel
import numpy as np

client = CiroClient(
    network="mainnet",
    verification=VerificationLevel.ZKML,
    gpu_preference="H100"  # ๐Ÿš€ Target enterprise hardware
)

# ๐Ÿง  Load your model and run verifiable inference
model_deployment = client.deploy_model(
    framework="pytorch",
    model_path="./models/transformer.onnx",
    optimization="fp16",     # โšก Performance optimization
    verification=True        # ๐Ÿ”ฎ Enable proof generation
)

result = client.infer(
    model_id=model_deployment.id,
    input_data=tokenized_text,
    batch_size=32,           # ๐Ÿ“Š Batch processing
    generate_proof=True      # โœ… Cryptographic guarantee
)

๐ŸŽจ Framework Integrations

PlatformIntegrationFeaturesStatus
๐Ÿค— Hugging FaceNativeModel hub deploymentโœ… Live
๐Ÿ“Š MLflowPluginExperiment trackingโœ… Live
๐Ÿ“ˆ TensorBoardDashboardPerformance monitoring๐Ÿ”„ Beta
โš–๏ธ Weights & BiasesIntegrationAdvanced analytics๐Ÿ“‹ Q1 2025

๐Ÿ—บ๏ธ Technical Roadmap

๐Ÿ“… Quarterly Milestones

gantt
    title ๐Ÿš€ Ciro Network Development Timeline
    dateFormat  YYYY-MM-DD
    section Foundation
    Core pBFT consensus           :done, foundation1, 2024-01-01, 2024-03-31
    Basic zkML support           :done, foundation2, 2024-02-01, 2024-04-30
    Kafka job orchestration      :done, foundation3, 2024-03-01, 2024-05-31
    
    section Scaling  
    Advanced zkML (Transformers) :active, scaling1, 2024-06-01, 2024-09-30
    Multi-GPU worker support     :scaling2, 2024-07-01, 2024-10-31
    Cross-chain verification     :scaling3, 2024-08-01, 2024-11-30
    
    section Optimization
    Proof batching & aggregation :optimization1, 2024-10-01, 2025-01-31
    FHE privacy features         :optimization2, 2024-11-01, 2025-02-28
    Federated learning           :optimization3, 2024-12-01, 2025-03-31
    
    section Ecosystem
    AI model marketplace         :ecosystem1, 2025-01-01, 2025-06-30
    Decentralized training       :ecosystem2, 2025-03-01, 2025-08-31
    Cross-platform AI oracles    :ecosystem3, 2025-06-01, 2025-12-31

๐ŸŽฏ Performance Targets

MetricQ1 2024Q2 2024Q3 2024Q4 2024Q1 2025
๐Ÿš€ Jobs/Hour2,84715,00035,00075,000150,000+
โšก Latency187ms150ms120ms100ms<80ms
โœ… Success Rate98.1%99.0%99.5%99.8%99.9%+
๐Ÿ‘ฅ Active Workers1275001,2003,0008,000+

๐Ÿ”ฌ Scientific Research Foundation

๐Ÿ“š Core Academic Papers

๐ŸŽ“ Peer-reviewed research backing every architectural decision

  1. ๐Ÿ›ก๏ธ Byzantine Consensus: Lamport et al. (1982) - "The Byzantine Generals Problem"

    • Foundation for fault-tolerant distributed systems
  2. โšก Practical Implementation: Castro & Liskov (1999) - "Practical Byzantine Fault Tolerance"

    • Production-ready consensus algorithms
  3. ๐Ÿ”ฎ Zero-Knowledge Proofs: Goldwasser et al. (1989) - "Knowledge Complexity of Interactive Proof Systems"

    • Cryptographic foundation for verifiable computation
  4. โœจ STARK Technology: Ben-Sasson et al. (2018) - "Scalable, transparent, post-quantum secure computational integrity"

    • Modern zero-knowledge proof systems

๐Ÿงฎ Mathematical Models

Network Efficiency Coefficient:

ฮท = (ฮฃแตข Cแตข ร— Uแตข ร— Rแตข) / (ฮฃแตข Cแตข ร— Pแตข)

Where:
โ€ข ฮท = Network efficiency (0.0 - 1.0)
โ€ข Cแตข = Compute capacity of worker i (TFLOPS)  
โ€ข Uแตข = Utilization rate of worker i (0.0 - 1.0)
โ€ข Rแตข = Reliability score of worker i (0.0 - 1.0)
โ€ข Pแตข = Peak theoretical performance of worker i

Economic Security Scaling:

S(n,f) = min(Economic_Security(n,f), Byzantine_Security(n,f))

Where:
โ€ข Economic_Security(n,f) = ฮฃแตขโ‚Œโ‚โฟ Stakeแตข ร— Slashing_Rateแตข
โ€ข Byzantine_Security(n,f) = 1 if n โ‰ฅ 3f + 1, else 0
โ€ข n = total validators, f = Byzantine failures

๐ŸŒŸ What's Next?

๐Ÿง  For Technical Teams

graph LR
    A[๐Ÿ“– Read This Guide] --> B[๐Ÿ”ฎ Explore ZK-ML Details]
    B --> C[โ›“๏ธ Smart Contract Integration]  
    C --> D[๐Ÿš€ Build Your First dApp]
    
    style A fill:#3b82f6,color:#fff
    style B fill:#7c3aed,color:#fff
    style C fill:#059669,color:#fff
    style D fill:#dc2626,color:#fff

๐Ÿ”ฌ For Researchers

  • ๐Ÿ“ Academic Collaboration: Join our research working groups
  • ๐Ÿ”“ Open Source: Contribute to GitHub repositories
  • ๐Ÿ” Peer Review: Validate mathematical models and implementations
  • ๐Ÿ’ก Innovation Labs: Propose novel ZK-ML applications

๐Ÿข For Enterprises

  • ๐Ÿš€ POC Development: Build proof-of-concepts on testnet
  • ๐Ÿ›ก๏ธ Security Audits: Participate in security review process
  • ๐Ÿ“‹ Integration Planning: Design enterprise AI workflows
  • ๐Ÿค Strategic Partnerships: Explore collaboration opportunities

๐ŸŽฏ The future of AI is verifiable, decentralized, and built on scientific principles.
Ready to be part of the revolution? Explore our architecture components and start building today! ๐Ÿš€